CONNECTIVITY AND CHROMATIC NUMBER OF INFINITE GRAPHS

ΒY

PÉTER KOMJÁTH Department of Computer Science, R. Eötvös University, Institute of Mathematics, 1088, Budapest, Muzeum krt 6–8, Hungary

ABSTRACT

Every graph with uncountable chromatic number contains for every finite n an n-connected subgraph with infinite degrees which has uncountable chromatic number.

0. Introduction

The study of the chromatic number of infinite graphs was started by P. Erdős and A. Hajnal in [2]. They showed, using a technique of E. W. Miller [5], that if G is a graph with uncountable chromatic number then it contains a complete bipartite graph on n, \aleph_1 points, respectively, for every finite n. Notice that this graph is n-connected. P. Erdős and A. Hajnal also showed that G contains an uncountable chromatic subgraph H, such that every vertex of H has an infinite degree in H. An unsolved problem of [2] generalizes this result: if G has uncountable chromatic number then it contains an ω -connected, uncountable chromatic subgraph. Later the result first mentioned was subsequently extended to the following theorem: every uncountable chromatic graph contains a subgraph isomorphic to the following: the vertices are x_s , y_t where s, t span the set of finite 0-1 sequences, and infinite 0-1 sequences with 0 from some place onward, respectively, x_s is joined to y_t whenever $s \in t$ (see [4]). Observe that in this (countable) graph every vertex has degree \aleph_0 .

In the first part of this paper we prove that every uncountable chromatic graph contains an *n*-connected, uncountable chromatic subgraph for every *n* (Theorem 1). The proof generalizes the technique of Miller and Erdős-Hajnal on strongly almost-disjoint set-systems for systems with no bound on the sizes of

Received June 3, 1985

P. KOMJÁTH

the sets. The system is the set consisting of the maximal *n*-connected (spanned) subgraphs, which are, by assumption, \aleph_0 -chromatic. We show that they can be well-ordered like $\{A_{\alpha}: \alpha < \lambda\}$ with the property that $\bigcup \{A_{\beta}: \beta < \alpha\}$ covers only finitely many points in A_{α} , and the other points of A_{α} are joined only to finitely many points in $\bigcup \{A_{\beta}: \beta < \alpha\}$. Now, as each A_{α} has countable chromatic number, we can color $\bigcup \{A_{\alpha}: \alpha < \lambda\}$ with \aleph_0 colors by transfinite recursion. By the theorem of Erdős-Hajnal, above, $\bigcup \{A_{\alpha}: \alpha < \lambda\}$ covers the points of G but a set of countable chromatic number, and the proof is complete.

In the second part of the paper we extend this result to the following: if G has uncountable chromatic number, then it contains an *n*-connected, uncountable chromatic subgraph H such that every point in H has an infinite degree in H(Theorem 2). The proof of this latter result has the same underlying idea as that of Theorem 1 with the main theorem of [4] instead of the one in [2], but it is much more complicated, uses more set theory, namely the technique elaborated in [4]. This is the reason why we give a separate proof for Theorem 1 as well, it is a bit simpler, and it can be understood knowing virtually nothing of set theory. Notice that Theorem 2 is also an immediate corollary of the above-mentioned conjecture of P. Erdős and A. Hajnal.

The proofs of Theorems 1–2 are given in Sections 1–2 and 3–5, respectively.

1. Preliminaries

Assume that G = (V, E) is a graph. For $T \subseteq V$ denote by G(T) the set of those points $x \in V$, for which x is joined to every point of T.

DEFINITION 1. Denote by $\mathscr{A} = \{A_i : i \in I\}$ the system of those subsets of V which span *n*-connected subgraphs of G and are *maximal* to this property, i.e. if $X \supseteq A_i$ then X does not span an *n*-connected subgraph. For $I' \subseteq I$, put $B(I') = \bigcup \{A_i : i \in I'\}$.

LEMMA 1. (a) If $i \neq j$, then $A_i \not\subseteq A_j$.

- (b) Every n-connected $A \subseteq V$ is a subset of some A_i .
- (c) V B(I) is \aleph_0 -chromatic.
- (d) If $i \neq j$, then $|A_i \cap A_j| \leq n-1$.

PROOF. (a) Trivial.

(b) By Zorn's lemma.

(c) From (b) and the theorem of Erdős and Hajnal mentioned in the introduction.

(d) If $|A_i \cap A_j| \ge n$, then $A_i \cup A_j$ is *n*-connected: whenever $X \subseteq A_i \cup A_j$,

 $|X| \leq n-1$, $A_i - X$, $A_j - X$ are connected and they have a common vertex, as $X \not\supseteq A_i \cap A_j$. The *n*-connectedness of $A_i \cup A_j$ contradicts (a) and (b).

From now on let m denote $3n^2$.

LEMMA 2. There exists a finite number s such that if $A_1, \ldots, A_m \in \mathcal{A}$ then there are no s members $A'_1, \ldots, A'_s \in \mathcal{A}$ with $|A'_i \cap B| \ge m$; here $B = \bigcup \{A_i : 1 \le i \le m\}$.

PROOF. Assume contradictory. It is enough to find a finite number t with the property that for $A_1, \ldots, A_{3n-1} \in \mathcal{A}$ there are no t sets $A'_1, \ldots, A'_i \in \mathcal{A}$ such that for every A'_j there are different vertices x_1, \ldots, x_{3n-1} with $x_i \in A_i \cap A'_j$. Once the claim is proved and we have a family like in the assumption, for every fixed A'_j , as $|A_i \cap A'_i| \leq n-1$ we can select by induction sets and different points with $x_i \in A_i \cap A'_j$ for a certain subset $T_j \subseteq \{1, 2, \ldots, m\}$ which has at least 3n-1 elements. If $s > tm^{3n}$, then there are $t A'_j$ for which the T_j are the same.

In order to prove the claim, observe first that as $|A'_{j_0} \cap A'_{j_1}| \le n-1$ for $j_0 \ne j_1$, the systems $\{x_1^0, \ldots, x_{3n-1}^0\}$ and $\{x_1^1, \ldots, x_{3n-1}^1\}$ chosen for A'_{j_0} , A'_{j_1} , respectively, differ in at least 2n - 1 places. Again, by Ramsey's theorem, if t is large enough, then there are 2n - 1 A'_j for which these sets pairwise differ in the same 2n - 1co-ordinates.

In other words, we can find $A_1, \ldots, A_{2n-1}, A'_1, \ldots, A'_{2n-1} \in \mathcal{A}$ and $x_{ij} \in A_i \cap A'_j$ such that $x_{ij_0} \neq x_{ij_1}$ and $x_{ioj} \neq x_{i_1j_1}$. But then $X = \bigcup \{A_i, A'_i: 1 \leq i \leq 2n - 1\}$ spans an *n*-connected subgraph: if $|Y| \leq n - 1$, then each of the sets $\{A_i - Y, A'_i - Y: 1 \leq i \leq 2n - 1\}$ is connected, and, if $i_0 \neq i_1$, there is a *j* with $x_{ioj}, x_{i_1j} \notin Y$, so $A_{i_0} - Y, A_{i_1} - Y$ and $A'_j - Y$ are in the same connected component, which easily gives that X - Y is connected.

LEMMA 3. If $x \notin A_i$, then x is joined to at most n-1 vertices of A_i .

PROOF. Otherwise $A_i \cup \{x\}$ would be a larger *n*-connected subset of V.

LEMMA 4. There is a finite number u such that if $A_1, \ldots, A_m \in \mathcal{A}$, then there are at most u different subsets $T \subseteq A_1 \cup \cdots \cup A_m$ with |T| = m such that there is a point $x \notin A_1 \cup \cdots \cup A_m$ joined to each point in T.

PROOF. As in Lemma 2, it is enough to show that there is a finite v such that if $A_1, \ldots, A_{2n} \in \mathcal{A}$, there are at most v sequences y_1, \ldots, y_{2n} with $y_i \neq y_j$ $(i \neq j)$, $y_i \in A_i$ and that there exists an $x \notin A_1 \cup \cdots \cup A_{2n}$ joined to y_1, \ldots, y_{2n} . Again, if there are "too many" sequences, we can find x_1, \ldots, x_{2n} such that for x_i, x_j the sequences corresponding to them differ on the same non-empty index-set, say on P. KOMJÁTH

 $\{1, \ldots, t\}$. That is to say, we have $y_{ij} \in A_j$ $(1 \le j \le t, 1 \le i \le 2n)$, $z_j \in A_j$ $(t+1 \le j \le 2n)$, x_i $(1 \le i \le 2n)$ such that $x_i \notin A_1 \cup \cdots \cup A_{2n}$, x_i is joined to $\{y_{ij}, z_j: 1 \le j \le 2n\}$ and $y_{i0j} \ne y_{i1j}, y_{ij0} \ne y_{ij1}, z_{j0} \ne z_{j1}$ for $i_0 \ne i_1, j_0 \ne j_1$.

We claim that the set $X = A_1 \cup \cdots \cup A_t \cup \{x_1, \ldots, x_{2n}, z_{t+1}, \ldots, z_{2n}\}$ spans an *n*-connected subgraph (a contradiction, as $t \ge 1$). Assume $|Y| \le n - 1$. All sets $A_1 - Y, \ldots, A_t - Y$ are connected. If $x_{i_0} \ne x_{i_1}$ are not in Y, then either there is a z_j $(t < j \le 2n)$ not in Y or there is a $j \le t$ with $y_{i_0j}, y_{i_1j} \ne Y$. (Otherwise Y covers $\{z_{t+1}, \ldots, z_{2n}\}$ and contains for each $j \le t$ either y_{i_0j} or y_{i_1j} . So Y meets either $\{y_{i_01}, \ldots, y_{i_0t}, z_{t+1}, \ldots, z_{2n}\}$ or $\{y_{i_11}, \ldots, y_{i_1t}, z_{t+1}, \ldots, z_{2n}\}$ in at least $(2n - t) + t/2 = 2n - t/2 \ge 2n - n = n$ elements.) So $\{x_1, \ldots, x_{2n}\} - Y$ is in the same component also, at least one point of them is joined to $A_1 - Y$ (as $Y \supseteq \{y_{11}, \ldots, y_{n1}\}$) and all are joined to $\{y_{t+1}, \ldots, y_{2n}\} - Y$, and we are done.

LEMMA 5. If $I' \subseteq I$, then the sets $\{i \in I : |A_i \cap B(I')| \ge m\}$ and $\{T \subseteq B(I'): |T| = m, G(T) \not\subseteq B(I')\}$ both have cardinality at most $|I'| + \omega$.

PROOF. Immediate from Lemmas 2 and 4.

2. Subsets of I

DEFINITION 2. A subset $I' \subseteq I$ is *closed*, if for $i \notin I' A_i \cap B(I')$ is finite and every $x \in A_i - B(I')$ is joined to finitely many points of B(I').

DEFINITION 3. A pair (I', I'') with $I' \subseteq I'' \subseteq I$ is legal if I' is closed, and (a) if $|A_i \cap B(I'' - I')| \ge m$, then $i \in I''$;

(b) if $T \subseteq B(I'' - I')$, |T| = m, $|G(T)| \ge n$, then there is a (unique) $i \in I''$ with $A_i \supseteq T \cup G(T)$;

(c) if $T \subseteq B(I'' - I')$, |T| = m, |G(T)| < n, then $G(T) \subseteq B(I'')$.

LEMMA 6. (a) If (I', I'') is legal, then I'' is closed.

(b) If (I_0, I_2) is legal, $I_0 \subseteq I_1 \subseteq I_2$, and I_1 is closed, then (I_1, I_2) is legal, as well.

(c) Assume that γ is an ordinal, $\{I_{\alpha} : \alpha \leq \gamma\}$ is a continuous, increasing sequence of subsets of I, (I_0, I_{α}) is legal for $\alpha < \gamma$, then (I_0, I_{γ}) is legal.

PROOF. Straightforward from the definitions.

LEMMA 7. If (I_0, I_2) is legal, $X \subseteq I_2 - I_0$, then there is an $I_1 \subseteq I_2$ with (I_0, I_1) legal, $X \subseteq I_1 - I_0$ and $|I_1 - I_0| \leq |X| + \omega$.

PROOF. Put $X_0 = X$. If X_t is defined for a $t < \omega$, choose $X_{t+1} \supseteq X_t$, $X_{t+1} \subseteq I_2 - I_0$ so that if $|A_i \cap B(X_t)| \ge m$ then $i \in I_0 \cup X_{t+1}$, if $T \subseteq B(X_t)$, |T| = m, $|G(T)| \ge n$, then there is an $i \in I_0 \cup X_{t+1}$ with $A_i \supseteq T \cup G(T)$, if |G(T)| < n

then $G(T) \subseteq B(I_0 \cup X_{t+1})$. Such an $X_{t+1} \subseteq I_2 - I_0$ can be found by Lemma 5 with $|X_{t+1}| \leq |X_t| + \omega$, and we can take $I_1 = I_0 \cup \bigcup \{X_t : t < \omega\}$.

DEFINITION 4. If $I' \subseteq I$, a correct order on I' is a well-order < with the following property: if $i \in I'$ and $B = B(\{j \in I': j < i\})$, then $A_i \cap B$ is finite and every $x \in A_i - B$ is joined to finitely many points of B.

LEMMA 8. If (I', I'') is legal, then there exists a correct order on I'' - I'.

PROOF. By induction on |I'' - I'|. If $|I'' - I'| \le \omega$, say $I'' - I' = \{i_0, i_1, ...\}$ order as $i_0 < i_1 < \cdots$. Now the closedness of I' and Lemmas 1(d) and 3 give the result. If $\kappa = |I'' - I'| > \omega$, by Lemmas 6(c) and 7 and a straightforward construction we can define a continuous, increasing chain $\{I_{\alpha} : \alpha \le \kappa\}$ with $I_0 = I'$, $I_{\kappa} = I''$, $|I_{\alpha} - I_0| < \kappa$, (I_0, I_{α}) legal. As $(I_0, I_{\alpha+1})$ is legal so is $(I_{\alpha}, I_{\alpha+1})$ (Lemma 6(a), (b)), so by the inductive assumption there is a correct order on $I_{\alpha+1} - I_{\alpha}$, $<_{\alpha}$. Now put i < j for $i, j \in I'' - I'$ if there is an $\alpha < \kappa$ with either $i <_{\alpha} j$ or $i \in I_{\alpha}, j \in I_{\alpha+1} - I_{\alpha}$.

THEOREM 1. If a graph has uncountable chromatic number, then it has an n-connected uncountable chromatic (spanned) subgraph.

PROOF. By Lemma 8, as (\emptyset, I) is legal, there is a correct order on *I*. If every A_i is countable chromatic, we can, along the correct order on *I*, recursively extend a good coloring with countably many colors to every B(I') where *I'* runs through the initial segments of *I*. This gives a good coloring of B(I) with countably many colors. By Lemma 1(c), V - B(I) is countable chromatic, so *V* is countable chromatic, as well.

3. More preliminaries

In order to prove Theorem 2, first we change some of the definitions according to the extra condition.

DEFINITION 5. If G = (V, E) is a graph, then $\mathcal{D} = \{D_j : j \in J\}$ is the set of those subsets $D \subseteq V$ which span *n*-connected subgraphs of G and in these subgraphs every point has an infinite degree, moreover, D is maximal to this property. For $J' \subseteq J$, put $E(J') = \bigcup \{D_j : j \in J'\}$. Sometimes, if possible, we fix a subsystem of \mathcal{D} as $\{D_{\alpha} : \alpha < \beta\}$ instead of $\{D_{j\alpha} : \alpha < \beta\}$.

LEMMA 9. (a) If $i \neq j$, then $D_i \not\subseteq D_j$.

(b) If $A \subseteq V$ spans an n-connected graph with infinite degrees, then $A \subseteq D_i$ for some $i \in J$.

(c) V - E(J) has countable chromatic number.

(d) If $i \neq j$, then $|D_i \cap D_j| \leq n-1$.

PROOF. (a) Trivial.

(b) By Zorn's lemma.

(c) By the result of [4] mentioned in the Introduction, every uncountable chromatic graph contains an *n*-connected subgraph with infinite degrees: take x_s , y_t for those s, t which start with n-1 zeroes.

(d) Like in the proof of Lemma 1(d), if $|D_i \cap D_j| \ge n$, then $D_i \cup D_j$ is *n*-connected and has infinite degrees.

LEMMA 10. There exists a finite s such that if $D_1, \ldots, D_m \in \mathcal{D}$ then there are no s members $D'_1, \ldots, D'_s \in \mathcal{D}$ with $|D'_i \cap E| \ge m$ where $E = \bigcup \{D_i: 1 \le i \le m\}$.

PROOF. Exactly as in the proof of Lemma 2.

The crux of the proof of Theorem 2 in that one cannot simply adapt Lemma 4; the points $\{x_1, \ldots, x_{2n}, z_{i+1}, \ldots, z_{2n}\}$ would have finite degrees.

LEMMA 11. If $x \notin D_i$, then x is joined to only finitely many points of D_i .

PROOF. Otherwise $D_i \cup \{x\}$ would be a larger *n*-connected subset with infinite degrees.

LEMMA 12. Assume that $\kappa > \omega$ is regular, $A(\alpha)$ is a set for $\alpha < \kappa$, $S \subseteq \kappa$ is stationary, ω many ordinals $\gamma(\alpha, 0) < \gamma(\alpha, 1) < \cdots < \alpha$ are given for $\alpha \in S$, $i < \omega$, a point $y(\alpha, i) \in A(\gamma(\alpha, i))$ is given. Then there are stationary many $\alpha \in S$ such that for every $k < \omega$ there is a stationary set $T \subseteq S$ such that if $\beta \in T$ and $i \leq k$, then $\gamma(\alpha, i) = \gamma(\beta, i)$, and, moreover, either $y(\alpha, i) = y(\beta, i)$ for $\beta \in T$, or the points $\{y(\beta, i): \beta \in T\}$ are different from each other and from $y(\alpha, i)$.

PROOF. We can assume that $|A_{\alpha}| \leq \kappa$ for $\alpha < \kappa$. For every $\alpha < \kappa$ fix a well-ordering of $A(\alpha)$ of type $\leq \kappa$; we will only be interested in the index $\delta(\alpha, i)$ of the point $y(\alpha, i)$ in $A(\gamma(\alpha, i))$. It is enough to guarantee a stationary $T \subseteq S$ with $\gamma(\alpha, i) = \gamma(\beta, i)$ for $i \leq k, \beta \in T$ and either $\delta(\alpha, i) < \alpha$ and $\delta(\alpha, i) = \delta(\beta, i)$ or $\delta(\alpha, i) \geq \alpha$ and $\delta(\beta, i) \geq \beta$ ($\beta \in T$).

Assume that this last claim does not hold, i.e. there exists a closed, unbounded $C \subseteq \kappa$, and for every $\alpha \in S \cap C$ there is a closed, unbounded $C_{\alpha} \subseteq \kappa$ and a $k(\alpha) < \omega$ such that if $\beta \in C_{\alpha} \cap S$, there is an $i \leq k(\alpha)$ such that either $\gamma(\alpha, i) \neq \gamma(\beta, i)$ or $\delta(\alpha, i) \neq \delta(\beta, i) < \alpha$ or $\delta(\alpha, i) \geq \alpha$, but $\delta(\beta, i) < \beta$.

For a stationary $T \subseteq S$, $k(\alpha) = k$. Put $U = T \cap \nabla \{C_{\alpha} : \alpha \in T\}$. Using the

pressing-down lemma, there is a stationary set $V \subseteq U$, and there are ordinals $\gamma_i, \delta_i, \varepsilon_i \in 2$ $(i \leq k)$, such that for $\alpha \in V$, $i \leq k$, $\gamma(\alpha, i) = \gamma_i$ holds, and, if $\varepsilon_i = 0$, then $\delta(\alpha, i) = \delta_i$, if $\varepsilon_i = 1$, then $\delta(\alpha, i) \geq \alpha$. Now, if we choose $\alpha < \beta$ from V, $\beta \in C_{\alpha} \cap S$, and this contradicts our assumptions.

4. Subsets of J

DEFINITION 6. If $J' \subseteq J'' \subseteq J$, then J' is relatively closed in J'', if for $i \in J'' - J'$, $D_i \cap E(J')$ is finite and every $x \in D_i - E(J')$ is joined to only finitely many points of E(J'). $J' \subseteq J$ is closed, if it is relatively closed in J.

DEFINITION 7. If $J' \subseteq J$, a correct order on J' is a well-order < with the following property: if for $i \in J'$, $E = E(\{j \in J': j < i\})$ then $D_i \cap E$ is finite and every $x \in D_i - E$ is joined to finitely many points of E.

LEMMA 13. Assume that $J' \subseteq J$ is the continuous, increasing union of $\{J_{\alpha}: \alpha < \gamma\}$ with J_{α} relatively closed in $J_{\alpha+1}$ ($\alpha < \gamma$), and every $J_{\alpha+1} - J_{\alpha}$ has a correct order. Then so has J'.

PROOF. We can fuse the well-orders as in Lemma 8.

LEMMA 14. Assume $J' \subseteq J$, $|J'| = \kappa > \omega$, regular, and if $|D_i \cap E(J')| \ge m$ then $i \in J'$. Identify J' as κ . Then $N = \{\alpha < \kappa : \alpha \text{ is not relatively closed in } \kappa\}$ is non-stationary.

PROOF. Assume that N is stationary. Lemma 10 gives a closed, unbounded set $C \subseteq \kappa$ such that if $\gamma \in C$ and $\beta \geqq \gamma$ then $|D_{\beta} \cap E(\gamma)| < m$. Therefore there is a stationary $S \subseteq N$ such that if $\alpha \in S$ then there exists a $\beta(\alpha) \geqq \alpha$ and an $x(\alpha) \in D_{\beta(\alpha)} - E(\alpha)$ which is joined to infinitely many points in $E(\alpha)$. Fix, for $\alpha \in S$, $\beta(\alpha)$ and $x(\alpha)$; we can even assume that the mapping $\alpha \mapsto \beta(\alpha)$ is one-to-one. Using Lemma 11 there are infinitely many ordinals $\gamma(\alpha, i) < \alpha$ such that there is a point $y(\alpha, i) \in D_{\gamma(\alpha, i)}$ joined to $x(\alpha)$. We can assume that $\gamma(\alpha, i) = \gamma_i$ for $i \le m, \alpha \in S$; choose $\delta \in C$ with $\delta > \gamma_i$ $(i \le m)$. By induction on $t < \omega$ we choose ordinals $\delta < \alpha_0 < \alpha_1 < \cdots < \alpha_t < \cdots (\alpha_t \in S)$ such that the following stipulations are satisfied:

(1) for every $k, t < \omega$ there is a stationary $S_{i,k} \subseteq S$ such that for $\alpha \in S_{i,k}$, $\gamma(\alpha, i) = \gamma(\alpha_i, i)$ $(i \leq k)$, and, for fixed $i \leq k$, the points $\{y(\alpha, i): \alpha \in S_{i,k}\}$ are either different or equal to $y(\alpha_i, i)$;

(2) for every $k, t < \omega$ there is an N with $t < N < \omega$ and $\alpha_N \in S_{t,k}$. This can easily be done by induction, using Lemma 12. Now put $X = \bigcup \{X_{t,k} : t, k < \omega\} \cup \{x(\alpha_0), x(\alpha_1), \ldots\}$ where $X_{t,k}$ is either $D(\gamma(\alpha_t, k))$ or P. KOMJÁTH

 $\{y(\alpha_t, k)\}\$ according to whether in (1) the first or second possibility holds. We claim that X spans an *n*-connected subgraph with infinite degrees. First we check degrees. $x(\alpha_t)$ is joined to all $y(\alpha_t, k)$ ($k < \omega$). $y(\alpha_t, k)$ is joined to those $x(\alpha_N)$ for which (1) holds with k = m + 1, m + 2, ..., etc. The points in $D(\gamma(\alpha_t, k))$ have infinite degrees, as well.

Assume that $Y \subseteq X$, $|Y| \leq n-1$. The subsets $X_{t,k} - Y$ are connected. If $x(\alpha_t), x(\alpha_t) \notin Y$, then they are in different components of X - Y only if $y(\alpha_t, k) \in Y$ for $k \leq m$ whenever $y(\alpha_t, k) = y(\alpha_{t'}, k)$; either $y(\alpha_t, k) \in Y$ or $y(\alpha_{t'}, k) \in Y$ when they are different. But this is impossible as we have seen in the proof of Lemma 4.

The set $X_{i,k} = \{y(\alpha_i, k)\}$ is joined to infinitely many $x(\alpha_N)$, and only n-1 of them can be in Y. If $X_{i,k} = D(\gamma(\alpha_i, k))$, the infinitely many different points $x(\alpha_N)$ are joined to the different $y(\alpha_N, k)$, only n-1 can be in Y, so there is an $N < \omega$ such that $x(\alpha_N)$ is joined (in X - Y) to $X_{i,k}$, and we are done.

As X is *n*-connected and has infinite degrees, there is an *i* with $D_i \supseteq X$. By the assumption in the lemma, $i \in J'$. By the choice of δ , and by $|X \cap E(\delta)| \ge m$, $i < \delta$ holds, so $X \subseteq E(\delta)$ which is impossible, as none of the points $x(\alpha_i)$ is in $E(\delta)$.

LEMMA 15. If $X \subseteq J_1 \subseteq J$ then there exists J_0 , a relatively closed subset of J_1 , with $X \subseteq J_0$, $|J_0| \leq |X| + \omega$.

PROOF. Put $\kappa = |X| + \omega$. By induction on $\alpha < \kappa^+$, we choose the sets X_{α} with $X \subseteq X_{\alpha}$, $|X_{\alpha}| \leq \kappa$, such that for every α , if $i \in J$ and $|D_i \cap E(X_{\alpha})| \geq m$ then $i \in X_{\alpha}$, $\{X_{\alpha} : \alpha < \kappa^+\}$ increasing, continuous, and if X_{α} is not relatively closed in J_1 (and we can assume this) an $i \in X_{\alpha+1} - X_{\alpha}$ with a point $x \in D_i - E(X_{\alpha})$ is joined to infinitely many points in $E(X_{\alpha})$. But this is impossible, by Lemma 14. This gives a closed $J' \supseteq X$ with $|J'| \leq |X| + \omega$. Now $J_0 = J' \cap J_1$ is relatively closed in J_1 .

DEFINITION 8. If < is a correct order on $J' \subseteq J$, then $X \subseteq J'$ is *neat* if the following holds: whenever $i \in X$, j < i and $D_j \cap D_i \neq \emptyset$ or a point in $D_i - E(\{j: j < i\})$ is joined to a point in D_j , then $j \in X$.

LEMMA 16. If X is a neat subset of J', then X is relatively closed in J'.

PROOF. If $i \in J' - X$ and $|D_i \cap E(X)| \ge \omega$ then, as < is a correct order, there is a $j \in X$ with i < j, $D_i \cap D_j \ne \emptyset$. If $i \in J' - X$ and $x \in D_i - E(X)$ is joined to y_0, y_1, \ldots in E(X), for every y_j choose the <-minimal t_j for which $y_j \in D_{t_j}$ ($t_j \in X$ as X is neat), by Lemma 11, infinitely many of the t_j are different, so there is a t_i with $i < t_i$, and $x \in D_i$ and $y_i \in D_{t_i} - E(\{r : r < t_i\})$ are joined, which gives $i \in X$.

LEMMA 17. If $X \subseteq J' \subseteq J$, and J' has <, a correct order, then there is a neat subset $Y \subseteq J'$ with $X \subseteq Y$, $|Y| \leq |X| + \omega$.

PROOF. From Definitions 7 and 8 and an easy closure argument.

LEMMA 18. Assume that $\{J_{\alpha} : \alpha \leq \gamma\}$ is an increasing, continuous sequence with J_{α} relatively closed in $J_{\alpha+1}$ ($\alpha < \gamma$), $J_{\alpha+1} - J_{\alpha}$ has a correct order. Then $J_{\gamma} - J_{0}$ has a correct order.

PROOF. We can fuse these correct orders.

5. The proof of Theorem 2

First we give a proof on singular compactness of the correct order property. This is a special case of Shelah's famous Singular Cardinal Compactness Theorem [6], but it is not easy to see that it is. Even the simpler expositions [1], [3] are complicated enough that to give a proof (extracted from [3]) is simpler than to see that the conditions of the theorem really apply. Anyway, the next lemma should be best attributed to Saharon Shelah.

LEMMA 19. Assume that $J' \subseteq J$, $|J'| = \lambda > cf(\lambda)$, J' is closed. If for every $J'' \subseteq J'$, $|J''| < \lambda$, J'' has a correct order, then so has J'.

PROOF. Let $\{\lambda_{\alpha} : \alpha < cf(\lambda)\}$ be an increasing, continuous sequence of cardinals converging to λ , $\lambda_0 > cf(\lambda)$. Put $J' = \bigcup \{J_{\alpha} : \alpha < cf(\lambda)\}$ as increasing decomposition with $|J_{\alpha}| = \lambda_{\alpha}$. Our aim is to find another continuous decomposition $\{X^{\alpha} : \alpha < cf(\lambda)\}$ with correct orders $<^{\alpha+1}$ on $X^{\alpha+1}$ such that X^{α} is neat in $X^{\alpha+1}$ by $<^{\alpha+1}$ and therefore Lemmas 16 and 18 give the claim.

Put $X_0^{\alpha} = J_{\alpha}$. If X_k^{α} is found with $|X_k^{\alpha}| = \lambda_{\alpha}$ for a $k < \omega$, choose a closed $Y_k^{\alpha} \supseteq X_k^{\alpha}$ with $|Y_k^{\alpha}| = |X_k^{\alpha}|$. Let $<_k^{\alpha}$ be a correct order which end-extends $<_{k-1}^{\alpha}$ (possible as Y_{k-1}^{α} is closed). Enumerate Y_k^{α} as $Y_k^{\alpha} = \{y_k^{\alpha,k}: \xi < \lambda_{\alpha}\}$. Choose

$$X_{k+1}^{\alpha} \supseteq Y_{k}^{\alpha} \cup \{y_{\xi}^{\beta,k}: \beta < \operatorname{cf}(\lambda), \xi < \lambda_{\alpha}\}$$

with the properties $|X_{k+1}^{\alpha}| = \lambda_{\alpha}$, $X_{k+1}^{\alpha} \supseteq \bigcup \{X_{k+1}^{\beta}: \beta < \alpha\}$ and $X_{k+1}^{\alpha} \cap Y_{l}^{\alpha+1}$ is a neat subset of $Y_{l}^{\alpha+1}$ by $<_{l}^{\alpha+1}$ for $l \le k$ (possible by Lemma 17, and a straightforward ω -long construction). Put $X^{\alpha} = \bigcup \{X_{k}^{\alpha}: k < \omega\} = \bigcup \{Y_{k}^{\alpha}: k < \omega\}$. $<^{\alpha} = \bigcup \{<_{k}^{\alpha}: k < \omega\}$ is a correct order on X^{α} . Clearly, $\{X^{\alpha}: \alpha < \operatorname{cf}(\lambda)\}$ is an increasing decomposition of J'. It is continuous, for, if $\alpha < \operatorname{cf}(\lambda)$ is limit, and $x \in X^{\alpha}$, say $x \in Y_k^{\alpha}$, $x = y_{\xi}^{\alpha,k}$ with $\xi < \lambda_{\alpha}$. As α is limit, there is a $\beta < \alpha$ with $\xi < \lambda_{\beta}$. Therefore $x \in X_{k+1}^{\beta} \subseteq X^{\beta}$.

 X^{α} is neat in $X^{\alpha+1}$ by $<^{\alpha+1}$, as $X^{\alpha} = X^{\alpha} \cap X^{\alpha+1} = \bigcup \{X^{\alpha} \cap Y_{l}^{\alpha+1} : l < \omega\} = \bigcup \{\bigcup \{X_{k}^{\alpha} \cap Y_{l}^{\alpha+1} : l \le k < \omega : l < \omega\}$. If l is fixed, the sets $X_{k}^{\alpha} \cap Y_{l}^{\alpha+1}$ (k = l, l+1, ...) are neat subsets of $Y_{l}^{\alpha+1}$, therefore $\bigcup \{X_{k}^{\alpha} \cap Y_{l}^{\alpha+1} : l \le k < \omega\} = X^{\alpha} \cap Y_{l}^{\alpha+1}$ is neat in $Y_{l}^{\alpha+1}$, so, as the sets $Y_{l}^{\alpha+1}$ end-extend each other, X^{α} is neat in $\bigcup \{Y_{l}^{\alpha+1} : l < \omega\} = X^{\alpha+1}$.

LEMMA 20. For every $J' \subseteq J$ there is a correct order on J'.

PROOF. By induction on |J'|. If J' is countable, it is trivial from Lemmas 9(d) and 11. If |J'| is singular, use Lemma 19. If |J'| is regular, use Lemmas 14 and 18.

THEOREM 2. Every uncountable chromatic graph contains an uncountable chromatic n-connected subgraph with all degrees infinite.

PROOF. Like in Theorem 1.

REFERENCES

1. S. Ben-David, On Shelah's compactness of cardinals, Isr. J. Math. 31 (1978), 34-56.

2. P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hung. 17 (1966), 61-99.

3. W. Hodges, In singular cardinality, locally free algebras are free, Algebra Univ. 12 (1981), 205-220.

4. P. Komjáth, The coloring number, Proc. London Math. Soc., to appear.

5. E. W. Miller, On a property of families of sets, Comptes Rendus Varsovie 30 (1937), 31-38.

6. S. Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem, and transversals, Isr. J. Math. 21 (1975), 319-349.