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ABSTRACT

Every graph with uncountable chromatic number contains for every finite n an
n-connected subgraph with infinite degrees which has uncountable chromatic
number.

0. Introduction

The study of the chromatic number of infinite graphs was started by P. Erd6s
and A. Hajnal in [2]. They showed, using a technique of E. W. Miller [5], that if
G is a graph with uncountable chromatic number then it contains a complete
bipartite graph on n, 8, points, respectively, for every finite n. Notice that this
graph is n-connected. P. Erd6s and A. Hajnal also showed that G contains an
uncountable chromatic subgraph H, such that every vertex of H has an infinite
degree in H. An unsolved problem of [2] generalizes this result: if G has
uncountable chromatic number then it contains an @-connected, uncountable
chromatic subgraph. Later the result first mentioned was subsequently ex-
tended to the following theorem: every uncountable chromatic graph contains a
subgraph isomorphic to the following: the vertices are x,, y, where s, ¢t span the
set of finite 0-1 sequences, and infinite 0-1 sequences with 0 from some place
onward, respectively, x, is joined to y, whenever s C t (see [4]). Observe that in
this (countable) graph every vertex has degree No.

In the first part of this paper we prove that every uncountable chromatic graph
contains an n-connected, uncountable chromatic subgraph for every n
(Theorem 1). The proof generalizes the technique of Miller and Erdés-Hajnal
on strongly almost-disjoint set-systems for systems with no bound on the sizes of
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the sets. The system is the set consisting of the maximal n-connected (spanned)
subgraphs, which are, by assumption, N,-chromatic. We show that they can be
well-ordered like {A,: @ < A} with the property that U{A,: 8 < a} covers only
finitely many points in A., and the other points of A, are joined only to finitely
many points in U{A,: B <a}. Now, as each A, has countable chromatic
number, we can color U{A,: @ < A} with R, colors by transfinite recursion. By
the theorem of Erdés-Hajnal, above, U{A.,: @ < A} covers the points of G but
a set of countable chromatic number, and the proof is complete.

In the second part of the paper we extend this result to the following: if G has
uncountable chromatic number, then it contains an n-connected, uncountable
chromatic subgraph H such that every point in H has an infinite degree in H
(Theorem 2). The proof of this latter result has the same underlying idea as that
of Theorem 1 with the main theorem of [4] instead of the one in [2], but it is
much more complicated, uses more set theory, namely the technique elaborated
in [4]. This is the reason why we give a separate proof for Theorem 1 as well, it is
a bit simpler, and it can be understood knowing virtually nothing of set theory.
Notice that Theorem 2 is also an immediate corollary of the above-mentioned
conjecture of P. Erd6s and A. Hajnal.

The proofs of Theorems 1-2 are given in Sections 1-2 and 3-5, respectively.

1. Preliminaries

Assume that G =(V, E) is a graph. For T C V denote by G(T) the set of
those points x € V, for which x is joined to every point of T.

DerNiTION 1. Denote by of ={A,: i € I} the system of those subsets of V
which span n-connected subgraphs of G and are maximal to this property, i.e. if
X2 A then X does not span an n-connected subgraph. For I'C I, put
BI=U{A:ier}.

Lemma 1. (a) If i# ], then AiZ A,

(b) Every n-connected A C V is a subset of some A,.
() V- B(I) is No-chromatic.

(d) If i#j, then |A;NA;j|=n—1.

Proor. (a) Trivial.

(b) By Zorn’s lemma.

(c) From (b) and the theorem of Erdés and Hajnal mentioned in the
introduction. ’

(d) If |AiN A;|= n, then A, U A; is n-connected: whenever X C A, U A,
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|X|=n-1, A,— X, A; — X are connected and they have a common vertex, as
X2 AN A,. The n-connectedness of A; U A, contradicts (a) and (b).

From now on let m denote 3n’.

LEMMA 2. There exists a finite number s such that if A,,...,A. € A then
there are no s members Al,...,A.€ o with |A{NB|=m; here B = U{A,—: 1=
i=m}.

PrOOF. Assume contradictory. It is enough to find a finite number ¢ with the
property that for A, ..., As;,_1 € o there are no tsets Ai,..., A€ o such that
for every A there are different vertices x,, ..., X3,—; with x; € A; N A}. Once the
claim is proved and we have a family like in the assumption, for every fixed A},
as |A; N A}|=n—1 we can select by induction sets and different points with
x; €A, N A} for a certain subset T; C{1,2,..., m} which has at least 3n —1
elements. If s > tm’", then there are t A} for which the T, are the same.

In order to prove the claim, observe first that as |Aj, N A},| = n —1for jo # ji,
the systems {x$,...,x5,_.} and {xi,...,x3._,} chosen for A}, A}, respectively,
differ in at least 2n — 1 places. Again, by Ramsey’s theorem, if ¢ is large enough,
then there are 2n —1 A/ for which these sets pairwise differ in the same 2n — 1
co-ordinates.

In other words, we can find A,,..., Ay, Al,..., A% €A and x; EAN
A’ such that x; # x,, and x,;# x,,. But then X = U{A,,A:1=i=<2n-1}
spans an n-connected subgraph: if | Y= n —1, then each of the sets {4, - Y,
A= Y:1=|=2n-1}is connected, and, if i, # i, there is a j with x,,;, x;; & Y,
so A,— Y, A,— Y and A— Y are in the same connected component, which
easily gives that X — Y is connected.

LemMA 3. If x& A, then x is joined to at most n — 1 vertices of A,.

Proor. Otherwise A; U{x} would be a larger n-connected subset of V.

LeEMMA 4. There is a finite number u such that if A,, ..., A, € d, then there
are at most u different subsets T C A U -+ - U A,, with | T| = m such that there is a
point x& A, U+ U A,, joined to each point in T.

ProoF. Asin Lemma 2, it is enough to show that there is a finite v such that
if A,..., A, € oA, there are at most v sequences yi, ..., Y2, With y;# y; (i # j),
y: € A; and that there exists an x& A; U -+ U A,, joined to yi,..., y:.. Again,
if there are ““too many” sequences, we can find x, . .., X;, such that for x;, x; the
sequences corresponding to them differ on the same non-empty index-set, say on
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{1,...,t}. That is to say, we have y, €A, (1=j=<t, 1=i=2n), z €A
(t+1=j=2n), x; (1=i=2n) such that x, € A, U---U A,,, x is joined to
{yiziz1=j=2n}and yio; # yis Yio # Vi 20 # Zis Vi # 25 fOT i # by, o # i
We claim that the set X = A, U - U A, U{x\,..., X2n, Zix1,..., 22,} SPANS an
n-connected subgraph (a contradiction, as ¢ = 1). Assume | Y|=n —1. All sets
Ai—-Y,...,A — Y are connected. If x,, # x,, are not in Y, then either there is a
z; (t<j=2n)notin Y orthereisaj=t with y,;, y.,€ Y. (Otherwise Y covers
{zce1,..., 222} and contains for each j=t either y, or y,. So Y
meets either {yii, ..., Vi Zictse v Z2n} OT {Yirts ..oy Yirss Zis1, ..., Z2,} In at least
2n—-t)+t/2=2n—-1t/2=2n—n =n elements.) So {x,,...,x:,}— Y is in the
same component also, at least one point of them is joined to A,— Y (as
Y2 {yi,..., y.}) and all are joined to {y..1,..., yn}— Y, and we are done.

LemMMA 5. IfI'CI, then the sets {i€ I: |A,NB(I")|=z m} and {T C B(I'):
|T|=m, G(T)Z B(I')} both have cardinality at most |I'| + w.

Proor. Immediate from Lemmas 2 and 4.

2. Subsets of I

DErFINITION 2. A subset I' C I is closed, if for i€ I' A; N B(I') is finite and
every x € A, — B{I') is joined to finitely many points of B(I').

DEerFINITION 3. A pair (I',I") with I'C I"C I is legal if I' is closed, and

(@) if |A;NB(I"—I) =z m, then i € 1",

() if TCBI"-1T),|T|=m,| G(T)| Z n, then there is a (unique) i € I" with
A DTUG(T)

©) if TCBUI"=T), |T|=m, |G(T)|< n, then G(T)C B(I").

LemMA 6. (a) If (I',I") is legal, then I" is closed.

(b) If (I, L) islegal, I, C I, C I, and I, is closed, then (1., I.) is legal, as well.

(c) Assume that vy is an ordinal, {I.: a =y} is a continuous, increasing
sequence of subsets of I, (Io, I.) is legal for a <'y, then (I, L,) is legal.

Proor. Straightforward from the definitions.

Lemma 7. If (I, L) is legal, X C I, — I, then there is an I, C I, with (I,, I,)
legal, XQL_ Io and II1_I()I§|XI+ .

Proor. Put X,= X If X, is defined for a t < w, choose X, 2 X,, X+, C
L—I, so that if [A, N B(X,)|=m then i € L,U X,.,, if TC B(X,), |T|=m,
| G(T)| = n, then there is an i € [, U X, with A, D2 TU G(T), if |G(T)|<n
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then G(T)C B(I,U X..;). Such an X..; C I, — I, can be found by Lemma 5 with
| X..1] =] X,|+ o, and we can take I, = LU U{X;: t < w}.

DeriNniTioN 4. If I'C I a correct order on I' is a well-order < with the
following property: if i € I' and B = B({j € I': j < i}), then A; N B is finite and
every x € A, — B is joined to finitely many points of B.

Lemma 8. If (I',I") is legal, then there exists a correct order on I"—I'.

PrOOF. By induction on |I"=1I'|. If |I"-T'|S w, say I"—=1I' ={io,i),...}
order as i, <i, <---.Now the closedness of I' and Lemmas 1(d) and 3 give the
result. If x =|I"—I'|>w, by Lemmas 6(c) and 7 and a straightforward
construction we can define a continuous, increasing chain {I,: a = x} with
L=1,1=1I"|L-L|<k (L,L) legal. As (I, L.) is legal so is (L, L)
(Lemma 6(a), (b)), so by the inductive assumption there is a correct order on
I...— I, <, Nowputi<jforij&lI —I'if there is an @ < k with either i <,j
ori€l,jeL.—L.

THeEOREM 1. If a graph has uncountable chromatic number, then it has an
n-connected uncountable chromatic (spanned) subgraph.

Proor. By Lemma 8, as (J, I) is legal, there is a correct order on L If every
A, is countable chromatic, we can, along the correct order on I, recursively
extend a good coloring with countably many colors to every B(I') where I’ runs
through the initial segments of I This gives a good coloring of B(I) with
countably many colors. By Lemma 1(c), V — B(I) is countable chromatic, so V
is countable chromatic, as well.

3. More preliminaries

In order to prove Theorem 2, first we change some of the definitions according
to the extra condition.

DerNITION 5. If G = (V, E) is a graph, then @ ={D;: j € J} is the set of
those subsets D C V which span n-connected subgraphs of G and in these
subgraphs every point has an infinite degree, moreover, D is maximal to this
property. For J' C J, put E(J")= U{D;: j € J'}. Sometimes, if possible, we fix a
subsystem of @ as {D.: a < B} instead of {D: a < 8}.

LEMMA 9. (a) If i# j, then D;Z D;.
(b) If A C V spans an n-connected graph with infinite degrees, then A C D; for
some | € J.
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(¢) V—E(J) has countable chromatic number.
(d) If i#]j, then |D,N D;|=n—1.

Proor. (a) Trivial.

(b) By Zorn’s lemma.

(c) By the result of [4] mentioned in the Introduction, every uncountable
chromatic graph contains an n-connected subgraph with infinite degrees: take
X, y. for those s, t which start with n — 1 zeroes.

(d) Like in the proof of Lemma 1(d), if |D: N D;|=n, then D, U D; is
n-connected and has infinite degrees.

LemMMA 10. There exists a finite s such thatif D, ..., D.. € & then there are no
s members D},...,D'.€ D with |D'NE|=m where E =U{D,: 1=i=m)}.

Proor. Exactly as in the proof of Lemma 2.

The crux of the proof of Theorem 2 in that one cannot simply adapt Lemma 4;
the points {xi,..., X2n, Zis1,-.., 22.} Would have finite degrees.

Lemma 11, If x& D, then x is joined to only finitely many points of D;.

Proor. Otherwise D; U{x} would be a larger n-connected subset with
infinite degrees.

LemMA 12, Assume that k > o is regular, A(a) is a set fora <k, S C«k is
‘stationary, @ many ordinals y(a,0)< y(a, 1)< -+ < a are given fora €S, i < w,
a point y(a, i) € A(y(a,i)) is given. Then there are stationary many a € S such
that for every k < w there is a stationary set T C S such thatif BE T and i =k,
then y(a,i)=v(B,i), and, moreover, either y(a,i)=1y(B,i) for BE T, or the
points {y(B,i): B € T} are different from each other and from y(«,i).

ProOF. We can assume that |A,|=« for a <«k. For every a <« fix a
well-ordering of A (a) of type = «; we will only be interested in the index 8(a, i)
of the point y(a, i) in A(y(a,i)). It is enough to guarantee a stationary TC S
with y(a,i)= y(B,i)fori =k, B € T and either §(a, i) < a and 6(e, i) = 8(B, i)
or 8(a,i)z « and 8(B,i)=B (BET).

Assume that this last claim does not hold, i.e. there exists a closed, unbounded
C Ck, and for every a« € S N C there is a closed, unbounded C, C « and a
k(a)< o such that if B&€C, NS, there is an i = k(a) such that either
y(a, i) # y(B,i) or 8(a, i)# 8(B,i1)<a or 8(a,i) = a, but 8§(B,i)<p.

For a stationary TCS, k(a)=k. Put U=TNV{C,: a € T}. Using the
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pressing-down lemma, there is a stationary set V C U, and there are ordinals
v, 8, & €2 (i =k), such that for « € V, i =k, y(a, i) =, holds, and, if & =0,
then 8(a,i)= 4, if & =1, then 8(a, i) = a. Now, if we choose a < from V,
B € C, NS, and this contradicts our assumptions.

4. Subsets of J

DEFINITION 6. If J'C J"C J, then J' is relatively closed in J",iffori € J"— T,
D, N E(J') is finite and every x € D, — E(J') is joined to only finitely many
points of E(J). J'CJ is closed, if it is relatively closed in J.

DeriNiTION 7. If J'C'J, a correct order on J' is a well-order < with the
following property: if for i € J', E = E({j € J': j <i}) then D; N E is finite and
every x € D, — E is joined to finitely many points of E.

LEmMMA 13. Assume that J'CJ is the continuous, increasing union of
{I.: a <y} with I, relatively closed in J,.. (a <vy), and every J,.,— J. has a
correct order. Then so has J'.

ProoF. We can fuse the well-orders as in Lemma 8.

LEMMA 14. Assume J'CJ, |J'|=« > w, regular, and if |D,NE{J){zZm
then i € I'. Identify J' as k. Then N ={a < k: a is not relatively closed in k} is
non-stationary.

Proor. Assume that N is stationary. Lemma 10 gives a closed, unbounded
set C C « such that if y € C and B = y then | D, N E(y)| < m. Therefore there
is a stationary § C N such that if @ €S then there exists a B(a¢)Z a and an
x(a) € Dg,— E(a) which is joined to infinitely many points in E(a). Fix, for
a €S, B(a) and x(a); we can even assume that the mapping a » B(a) is
one-to-one. Using Lemma 11 there are infinitely many ordinals y(e, i) < & such
that there is a point y(a,i)€ D, joined to x(a). We can assume that
Y(a,i)= v, for i =m, a € S; choose § € C with § > v, (i £ m). By induction on
t<w we choose ordinals § <ap<a; < -<a <--- (& €ES) such that the
following stipulations are satisfied:

(1) for every k,t <o there is a stationary S,x CS such that for a €S,
v(a,i)=v(a,, i) (i = k), and, for fixed i =k, the points {y(a,i): @ € S,«} are
either different or equal to y(a,,i);

(2) for every k,t < o there is an N with t <N < e and an € S..

This can easily be done by induction, using Lemma 12. Now put X =
U{X..: t k <o}U{x(ao), x(a1),...} where X, is either D(y(a,k)) or
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{y(ai, k)} according to whether in (1) the first or second possibility holds. We
claim that X spans an n-connected subgraph with infinite degrees. First we
check degrees. x(a,) is joined to all y(a,, k) (k < ®). y(a;, k) is joined to those
x(an) for which (1) holds with k=m+1,m+2,..., etc. The points in
D (y(a:, k)) have infinite degrees, as well.

Assume that YC X, |Y|=n—1. The subsets X,, — Y are connected. If
x{a,), x(a)Z Y, then they are in different components of X —Y only if
y(a,, k)EY for k =m whenever y(ai, k)= y(a., k); either y(a,k)EY or
y{(a, k)€ Y when they are different. But this is impossible as we have seen in
the proof of Lemma 4.

The set X, ={y(a., k)} is joined to infinitely many x(a~), and only n —1 of
them can be in Y. If X, = D(y(a,, k)), the infinitely many different points x (ax)
are joined to the different y(an, k), only n —1 can be in Y, so there is an N < w
such that x(ay) is joined (in X — Y) to X,,, and we are done.

As X is n-connected and has infinite degrees, there is an i with D; D X. By the
assumption in the lemma, i € J'. By the choice of 8, and by | X N E(8)|= m,
i < 8 holds, so X C E(8) which is impossible, as none of the points x(a,) is in
E(3).

LeMMA 15. If X C J, C J then there exists Jy, a relatively closed subset of Ji,
with X C Jo, | Jo| = | X |+ .

ProOF. Put k =|X |+ w. By induction on @ < k", we choose the sets X, with
X C X., | X.| = «, such that for every a, if i €J and |D;, N E(X,)|= m then
i € X,,{X.: @ <«"}increasing, continuous, and if X, is not relatively closed in
Ji (and we can assume this) an i € X,., — X, with a point x € D, — E(X,) is
joined to infinitely many points in E (X, ). But this is impossible, by Lemma 14.
This gives a closed J'D X with [J'|=|X|+ . Now Jo=J'NJ, is relatively
closed in J,.

DerIniTION 8. If < is a correct order on J' C J, then X C J' is neat if the
following holds: whenever i€ X, j<i and D,ND,;#J or a point in
D~ E({j: j<i}) is joined to a point in D, then j € X.

LemMA 16. If X is a neat subset of J', then X is relatively closed in J'.

Proor. If i€EJ'— X and |D, N E(X)|Z  then, as < is a correct order,
there is a jE€EX with i<j DND;#J. If i€eJ' —X and x €D: — E(X) is
joined to yo, yi,... in E(X), for every y; choose the < -minimal ¢ for which
yy€ED, ( €X as X is neat), by Lemma 11, infinitely many of the § are
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different, so there is a ¢, with i <, and x €D, and y, € D,— E({r: r <t}) are
joined, which gives i € X.

Lemma 17. If X CJ' CJ, and J' has <, a correct order, then there is a neat
subset YCJ' with XC Y, |Y|Z|X|+ .

Proor. From Definitions 7 and 8 and an easy closure argument.

LEMMA 18. Assume that {J,: a = vy} is an increasing, continuous sequence
with J, relatively closed in J,., (& < v), J,.. — J. has a correct order. Then J, — J,
has a correct order.

Proor. We can fuse these correct orders.

5. The proof of Theorem 2

First we give a proof on singular compactness of the correct order property.
This is a special case of Shelah’s famous Singular Cardinal Compactness
Theorem [6], but it is not easy to see that it is. Even the simpler expositions [1],
[3] are complicated enough that to give a proof (extracted from {3]) is simpler
than to see that the conditions of the theorem really apply. Anyway, the next
lemma should be best attributed to Saharon Shelah.

LEMMA 19. Assume that J'CJ, |J'|= A >cf(L), J' is closed. If for every
J"CJ', |J"| <A, J" has a correct order, then so has I'.

Proor. Let {A,: a <cf(A)} be an increasing, continuous sequence of cardi-
nals converging to A, A, > cf(A). Put J' = U{J,: @ < cf(A)} as increasing decom-
position with |J, | = A,. Our aim is to find another continuous decomposition
{X*: @ <cf(A)} with correct orders <**' on X**' such that X* is neatin X**' by
<°*" and therefore Lemmas 16 and 18 give the claim.

Put X§=J,. If X% is found with | Xi|=A, for a k <, choose a closed
YD X5 with | Yi|=]|X7|. Let <; be a correct order which end-extends <§_,
(possible as Yi., is closed). Enumerate Y§ as Yi={ys*: £ <A.}. Choose

X2 YiU{yss B <cf(A), £ < A}

with the properties | X5 = A, X5 2U{X{.: B<a}and Xi N Y isa
neat subset of Yi*' by <{*' for I = k (possible by Lemma 17, and a straightfor-
ward w-long construction). Put X* = U{X: k<w}=U{Y: k<w} <=
U{<3: k < w}is a correct order on X°. Clearly, {X*: a < cf(A )} is an increasing
decomposition of J'. It is continuous, for, if & <cf(A) is limit, and x € X°, say
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x€Y; x=y¢* with £<A,. As a is limit, there is a B <a with &< A,.
Therefore x € X§,, C X*.

X®is neatin X*"' by <*" as X*=X"NX""=U{X"NY{":I<w)=
UU{Xsn Y lsk<w:l<w) If 1| is fixed, the sets XiNY:*
(k=11+1,...)are neat subsets of Y7, therefore U{X;N ¥i*": ISk < w}=
XN Y isneatin Y7, s0, as the sets Y7 "' end-extend each other, X is neat
in U{Y{": I<o}=X"

LemMMA 20. For every J' C J there is a correct order on J'.

Proor. By induction on |J’|. If J' is countable, it is trivial from Lemmas 9(d)
and 11. If | J'| is singular, use Lemma 19. If | J'| is regular, use Lemmas 14 and 18.

THEOREM 2. Every uncountable chromatic graph contains an uncountable
chromatic n-connected subgraph with all degrees infinite.

Proor. Like in Theorem 1.
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