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ABSTRACT 

Every graph with uncountable chromatic number  contains for every finite n an 
n-connected subgraph with infinite degrees which has uncountable chromatic 
number.  

O. Introduction 

The study of the chromatic number of infinite graphs was started by P. Erd6s 

and A. Hajnal in [2]. They showed, using a technique of E. W. Miller [5], that if 

G is a graph with uncountable chromatic number then it contains a complete 

bipartite graph on n, ~li points, respectively, for every finite n. Notice that this 

graph is n-connected. P. Erd6s and A. Hajnal also showed that G contains an 

uncountable chromatic subgraph H, such that every vertex of H has an infinite 

degree in H. An unsolved problem of [2] generalizes this result: if G has 
uncountable chromatic number then it contains an oJ-connected, uncountable 

chromatic subgraph. Later the result first mentioned was subsequently ex- 

tended to the following theorem: every uncountable chromatic graph contains a 

subgraph isomorphic to the following: the vertices are x,, y, where s, t span the 

set of finite 0-1 sequences, and infinite 0-1 sequences with 0 from some place 

onward, respectively, xs is joined to y, whenever s C t (see [4]). Observe that in 

this (countable) graph every vertex has degree No. 

In the first part of this paper we prove that every uncountable chromatic graph 

contains an n-connected, uncountable chromatic subgraph for every n 

(Theorem 1). The proof generalizes the technique of Miller and Erd6s-Hajnal 

on strongly almost-disjoint set-systems for systems with no bound on the sizes of 
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the sets. The system is the set consisting of the maximal n-connected (spanned) 

subgraphs, which are, by assumption, No-chromatic. We show that they can be 

well-ordered like {A~ : a < Jr} with the property that U{A~:/3 < a} covers only 

finitely many points in A, ,  and the other points of A~ are joined only to finitely 

many points in U{A~:/3 < a}. Now, as each A,  has countable chromatic 

number, we can color U{A,  : a < )t} with No colors by transfinite recursion. By 

the theorem of Erd6s-Hajnal,  above, U{A,  : a < )t} covers the points of G but 

a set of countable chromatic number, and the proof is complete. 

In the second part of the paper we extend this result to the following: if G has 

uncountable chromatic number, then it contains an n-connected, uncountable 

chromatic subgraph H such that every point in H has an infinite degree in H 

(Theorem 2). The proof of this latter result has the same underlying idea as that 

of Theorem 1 with the main theorem of [4] instead of the one in [2], but it is 

much more complicated, uses more set theory, namely the technique elaborated 

in [4]. This is the reason why we give a separate proof for Theorem 1 as well, it is 

a bit simpler, and it can be understood knowing virtually nothing of set theory. 

Notice that Theorem 2 is also an immediate corollary of the above-mentioned 

conjecture of P. Erd6s and A. Hajnal. 

The proofs of Theorems 1-2 are given in Sections 1-2 and 3-5, respectively. 

1. Preliminaries 

Assume that G = ( V , E )  is a graph. For TC_ V denote by G(T) the set of 

those points x E V, for which x is joined to every point of T. 

DEFINITION 1. Denote by M = {At: i E I} the system of those subsets of V 

which span n-connected subgraphs of G and are maximal to this property, i.e. if 

X ~ A t  then X does not span an n-connected subgraph. For I'C_ I, put 

B ( I ' ) =  U{A,: i E I'}. 

LEMMA 1. (a) If i~ j, then At ~- Aj. 
(b) Every n-connected A C_ V is a subset of some A~. 
(c) V - B ( I )  is Mo-chromatic. 
(d) If i ~ j, then I A, n A, l <= n - 1 .  

PROOF. (a) Trivial. 

(b) By Zorn's lemma. 
(c) From (b) and the theorem of Erd6s and Hajnal mentioned in the 

introduction. 

(d) If I A, n A,I--> n, then At U Aj is n-connected: whenever X C_ At O Aj, 
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I X  I = n - 1, Ai - X, Aj - X are connec ted  and they have  a c o m m o n  vertex,  as 

X2~ Ai N A t. The  n -connec tedness  of A~ U Aj contradicts  (a) and (b). 

F rom now on let m deno te  3n 2. 

LEMMA 2. There exists a finite number  s such that if  A~ . . . . .  Am E sit then 

there are no s members  A '~,.. . ,  A's E sg with I A'~ O B I >= m ; here B = U {A~ : 1 <-<_ 

i<=m}. 

PROOF. Assume  contradic tory.  It  is enough  to find a finite n u m b e r  t with the 

p rope r ty  that  for  A 1 , . . . ,  A3n 1 ~ ~ there  are no t sets A '1 . . . .  , A',  E M such that  

for  every  A ;  there  are different vert ices x~ . . . . .  x3,-~ with x~ E A~ O A'j. Once  the 

claim is p roved  and we have a family like in the assumpt ion ,  for every  fixed A ~, 

as IA, n A;I-<- n - 1  we can select by induction sets and different points  with 

x~ ~ A ~  N A ;  for a certain subset  Tj___{1,2 . . . .  , m }  which has at least 3 n - 1  

e lements .  If s > tm 3~, then there  are t A~ for which the ~ are the same.  

In order  to p rove  the claim, observe  first that  as ] A )o n A ~, ] <= n - 1 for  j0 ~ j~, 

,x3n ~} chosen for A '  A '  respect ively,  the systems {x°,. o 1 ,x3,-1} and {xl , .  . . . .  io~ J~ 

differ in at least 2n - 1 places. Again,  by R a m s e y ' s  t heo rem,  if t is large enough,  

then there  are 2n - 1 A'j for which these sets pairwise differ in the same 2n - 1 

co-ordinates .  

In o ther  words,  we can find Al  . . . . .  A2. ~, A'~ . . . . .  A~, 1E ~ and X~j E A~ n 

A~ such that  Xoo~ xo, and X~oj~ xw. But  then X = U { A , A ] :  l_--N_i=_ < 2 n - 1 }  

spans an n -connec ted  subgraph:  if I YI --< n - 1, then each of the sets {Ai - Y, 

A ' ~ -  Y: 1 =< i =< 2n - 1} is connected ,  and,  if i0 ~ i~, there is a j with X~oj, x w ~  Y, 

so A ~o- Y, A ~ -  Y and A ~ -  Y are in the same connec ted  componen t ,  which 

easily gives that  X -  Y is connected .  

LEMMA 3. I f  X if- Ai ,  then x is joined to at most  n - 1 vertices of  A~. 

PROOF. Otherwise  A~ U{x} would be a larger n -connec ted  subset  of V. 

LEMMA 4. There is a finite number u such that if  A~ . . . .  , Am E sl, then there 

are at most  u different subsets T C A ~ U • ." U A, ,  with I T I = m such that there is a 

point xff_ A~ U . . .  U A, ,  joined to each point in T. 

PROOF. As in L e m m a  2, it is enough to show that  there  is a finite v such that  

if A ~ , . . . ,  A2, ~ ~ ,  there  are at most  v sequences  yL , . . . ,  y: ,  with y ~  y~ ( i ~  j) ,  

y~ G Ai and that  there  exists an x ~  A~ U ..  • O A : ,  jo ined to y~ . . . .  , y~,. Again,  

if there  are " too  m a n y "  sequences ,  we can find x~ , . . . ,  x~, such that  for  x~, xi the 

sequences  cor responding  to them differ on the same n o n - e m p t y  index-set ,  say on 
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{1 . . . . .  t}. That  is to say, we have y~jEAj  (l<=j<=t, 1 - < i = 2 n ) ,  z j E A j  
( t + l < = j < 2 n ) ,  x, ( l = < i < 2 n )  such that x ~ C _ A I U . " U A 2 , ,  x~ is joined to 

{y, ,z j :  1 =<j < 2 n } a n d  Y~oj~ Y,j, Y~o# Yq. Zjo~ z j,, yz, o~  zj~ for io~ il, jo~j l .  
We claim that the set X = A1 U • • - U A, U {xi . . . . .  x2., z,+~ . . . . .  zz.} spans an 

n -connec ted  subgraph (a contradict ion,  as t > 1). Assume I Y] < n - 1. All sets 

A1 - Y, . . . .  A, - Y are connected.  If X,o # x,a are not  in Y, then ei ther  there  is a 

zj (t < j < 2n)  not in Y or there is a j -<- t with Y~oi, Y . ~  Y. (Otherwise Y covers 

{z,+l . . . . .  z2.} and contains for each j<=t ei ther  Y~oi or y . j .  So Y 

meets  ei ther  {y~ol . . . . .  Y,o,, z,+l . . . . .  z2.} or {y~,l . . . . .  y , . ,  Z,+l , . . . ,  z2.} in at least 

( 2 n -  t)+ t/2 = 2 n -  t/2>= 2 n -  n = n elements .)  So {xl . . . . .  x 2 , } -  Y is in the 

same componen t  also, at least one point  of them is joined to A , - Y  (as 

Y2~ {y11,. . . ,  y,~}) and all are jo ined to {Y,+l . . . .  , y 2 , } -  Y, and we are done.  

LEMMA 5. If  I' C_ L then the sets {i ~ I: IA~ f3 B(I ' ) ]  >= m} and {T C B(I ' ) :  

ITI = m, G ( T ) ~  B(I ' )} both have cardinality at most ]I'1+ to. 

PROOF. Immedia te  f rom Lemmas  2 and 4. 

2. Subsets of I 

DEFINITION 2. A subset I ' C  I is closed, if for  i ~  I '  A, A B ( I ' )  is finite and 

every x E A~ - B ( I ' )  is joined to finitely many points of B (I'). 

DEFINITION 3. A pair (I ' ,  I") with I '  _C I" _C I is legal if I '  is closed, and 

(a) if IA, N B ( I " - I ' ) I > = m ,  then i E I " ;  
(b) if T C_ B ( I " -  I'), I TI = m, ] G(T)] >= n, then there  is a (unique) i E I" with 

A, D T U  G ( T ) ;  

(c) if T C _ B ( I " - I ' ) ,  I T ] = m ,  IG(T)I< n, then G(T)C_B(I") .  

LEMMA 6. (a) I f  (I', I") is legal, then I" is closed. 
(b) I f  (Io,/2) is legal, Io C_ L C I2, and I1 is closed, then (Ii, I2) is legal, as well. 
(c) Assume that y is an ordinal, {I~: a <-y} is a continuous, increasing 

sequence of subsets of L (Io, L )  is legal for a < y, then (Io, I~) is legal. 

PROOF. Straightforward from the definitions. 

LEMMA 7. I f  (Io, I2) is legal, X C_ 12 - / o ,  then there is an 11 C_ I2 with (Io, 11) 

legal, X C _ I i - I o  and ] L - I o l < l x l + t o .  

PROOF. 

12-1o so 

] G ( T ) I =  > 

Put Xo = X. If X, is defined for a t < to, choose X,+1 D_ X,, X,+I C_ 
that  if I A ~ N B ( X , ) I > m  then iEIoUX,+I ,  if TC_B(X,) ,  { T { = m ,  

n, then there  is an i E Io U X,+1 with A, _D T O G(T), if ] G(T)[ < n 
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then G(T)C_ B(Io U X,+~). Such an Xt+l ~ 12- Io can be found by Lemma 5 with 

Ix,+lJ<=lx, l+o,, and we can take I ,=IoU U{X,: t <,o}. 

DEFINmON 4. If I ' C I ,  a correct order on I '  is a well-order < with the 

following property: if i E I '  and B = B({j E I': j < i}), then A, N B is finite and 

every x ~ A~ - B is joined to finitely many points of B. 

LEMMA 8. If (I', I") is legal, then there exists a correct order on I " -  I'. 

PROOF. By induction on I I " - I '  I. If [I"-I ']<o~, say I " - I '={ io ,  i~,...} 
order as i0 < il < ' " .  Now the closedness of I '  and Lemmas l(d) and 3 give the 

result. If K = I I ' -  I ' l >  oJ, by Lemmas 6(c) and 7 and a straightforward 

construction we can define a continuous, increasing chain {I~: a < K} with 

Io=I' ,  L =I", I L - I o I < K ,  (Io, I~) legal. As (Io, I~+ d is legal so is (L,I~+0 

(Lemma 6(a), (b)), so by the inductive assumption there is a correct order on 

I ,+1-  lo, < , .  Now put i < j for i,j E I " -  I' if there is an a < K with either i < , j  

or i ~ L ,  jEL+~- I , , .  

THEOREM 1. If a graph has uncountable chromatic number, then it has an 
n-connected uncountable chromatic (spanned) subgraph. 

PROOF. By Lemma 8, as (Q, I )  is legal, there is a correct order on L If every 

A~ is countable chromatic, we can, along the correct order on I, recursively 

extend a good coloring with countably many colors to every B (I') where I '  runs 

through the initial segments of L This gives a good coloring of B(I)  with 

countably many colors. By Lemma l(c), V -  B(I)  is countable chromatic, so V 

is countable chromatic, as well. 

3. More preliminaries 

In order to prove Theorem 2, first we change some of the definitions according 

to the extra condition. 

DEFINITION 5. If G = (V, E )  is a graph, then ~ = {D~:j E J} is the set of 

those subsets D C_ V which span n-connected subgraphs of G and in these 

subgraphs every point has an infinite degree, moreover,  D is maximal to this 

property. For J'_C J, put E(J') = I..J{Dj: ] E J'}. Sometimes, if possible, we fix a 

subsystem of @ as {D. : a </3} instead of {Dj.: a </3}. 

LEMMA 9. (a) If i~ j, then D, C Dj. 
(b) IrA C_ V spans an n-connected graph with infinite degrees, then A C D, for 

some i E J. 
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(c) V - E ( J )  has countable chromatic number. 

(d) I f i ~ j ,  then ID, n D i l < = n - 1 .  

PROOF. (a) Trivial. 

(b) By Zorn's lemma. 

(c) By the result of [4] mentioned in the Introduction, every uncountable 

chromatic graph contains an n-connected subgraph with infinite degrees: take 

x~, y, for those s, t which start with n -  1 zeroes. 

(d) Like in the proof of Lemma l(d), if ID, A D j I > n ,  then D, UDj  is 

n-connected and has infinite degrees. 

LEMMA 10. There exists a finite s such that if D~ . . . .  ,Din E ~ then there are no 

s m e m b e r s D [ , . . . , D ' s ~ @  with [D ' ,AEI  >-m whereE=U{D, : l _ -< i_ -<m} .  

PROOF. Exactly as in the proof of Lemma 2. 

The crux of the proof of Theorem 2 in that one cannot simply adapt Lemma 4; 

the points {Xl . . . .  , x2n, z,÷1,...,  z2,} would have finite degrees. 

LEMMA 11. If X~  D~, then x is joined to only finitely many points of D~. 

PROOF. Otherwise D~ U{x} would be a larger n-connected subset with 

infinite degrees. 

LEMMA 12. Assume t h a t r > t o  is regular, A(c~) i sa  s e t f o r c t < r ,  SC_r  is 

stationary, to many ordinals `/(oe, 0) < `/(a, 1) < .  • • < a are given for ct ~ S, i < to, 

a point y(a, i ) C  A(`/(oq i)) is given. Then there are stationary many a E S such 

that for every k < to there is a stationary set T C_ S such that if/3 ~ T and i <= k, 

then `/(a, i) = -/(/3, i), and, moreover, either y(a, i) = y(/3, i) for/3 E T, or the 

points {y(/3, i): 13 E T} are different from each other and from y(a, i). 

PROOF. We can assume that I A~ I _-< r for a < r. For every a < K fix a 

well-ordering of A (a) of type _-< r ; we will only be interested in the index 8(a, i) 

of the point y(a,  i) in A(` / (a ,  i)). It is enough to guarantee a stationary TC_ S 

with `/(a, i) = `/(fl, /) for i _-< k, fl E T and either 8(a, i ) <  a and 8(a, i) = 8(fl, i) 

or ~ ( a , i ) > a  and 8(fl, i)>=fl (fl E T). 
Assume that this last claim does not hold, i.e. there exists a closed, unbounded 

CC_ •, and for every a (E S N C there is a closed, unbounded C, C K and a 

k ( a ) < t o  such that if / 3 E C ,  AS ,  there is an i N k ( a )  such that either 

` / (a , i )~ ` / ( f l ,  i) or 8 ( a , i ) ~  8(/3, i ) <  a or 8(a, i)_-> a, but 6(/3, i )</3.  

For a stationary TC_S, k ( a ) =  k. Put U = TAV{C~: a E T}. Using the 
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pressing-down lemma,  there  is a s tat ionary set V C U, and there  are ordinals 

~/~, 6~, e~ ~ 2 (i _<- k), such that for  a E V, i ~ k, 7 (a ,  i) = 3', holds, and, if e, = O, 

then ~(a,  i ) =  ~,, if e, = 1, then 8(a ,  i ) =  > a. Now, if we choose a < /3  from V, 

/3 ~ C~ r3 S, and this contradicts  our  assumptions.  

4. Subsets of J 

DEFINITION 6. If J '  C J" C J, then J '  is relatively closed in J", if for i ~ J " -  J ' ,  

D, N E(J ' )  is finite and every x E D~-  E(J ' )  is joined to only finitely many 

points of E(J').  J ' C  J is closed, if it is relatively closed in J. 

DEFINITION 7. If J'C_'J, a correct order on J '  is a well-order  < with the 

following proper ty :  if for i ~ J', E = E({ ]  ~ J': j < i}) then D, n E is finite and 

every  x E D, - E is joined to finitely many points of E. 

LEMMA 13. Assume that J ' C  J is the continuous, increasing union of 

{J~: a < 7} with Jo relatively closed in J~+l (a < ~,), and every J~+l - J~ has a 

correct order. Then so has J'. 

PROOF. We can fuse the well-orders as in L e m m a  8. 

LEMMA 14. Assume J ' C J ,  I J ' [ = K > c 0 ,  regular, and if [O, nE(J')l>m 
then i E J'. Identify J' as r. Then N = {a < K: a is not relatively closed in r} is 

non -stationary. 

PROOF. Assume that  N is stationary. L e m m a  10 gives a closed, unbounded  

set C C g such that if 3, ~ C and fl => ~, then IDe N E(~,)I < m. The re fo re  there  

is a s tat ionary S C N such that if a ~ S then there  exists a fl (a)_-> a and an 

x (a )  @ D ~ ) - E ( a )  which is joined to infinitely many points in E ( a ) .  Fix, for 

a E S, f l (a)  and x ( a ) ;  we can even assume that the mapping a n i l ( a )  is 

one- to-one .  Using L e m m a  11 there  are infinitely many ordinals ~,(a, i ) <  a such 

that there  is a point  y ( a , i ) E D ~ l ~ . ~ ) j o i n e d  to x ( a ) .  We can assume that 

~/(a, i) = ~,~ for i =< m, a E S; choose ~ @ C with S > ~/~ (i =< m). By induction on 

t < to we choose ordinals ~ < a o <  a~ < ' . -  < a, < . . -  (a, E S) such that the 

following stipulations are satisfied: 

(1) for  every  k, t < to there  is a s tat ionary S,.k C_ S such that for a E S,.k, 

y(a, i) = 3'(a,, i) (i =< k), and, for  fixed i -< k, the points {y(a,  i): a E S,.k} are 

ei ther  different or equal to y(a,, i); 

(2) for  every  k, t < to there  is an N with t < N <  to and an E S,.k. 

This can easily be done  by induction,  using L e m m a  12. Now put X =  

(. .]{X,.k:t ,k<oo}U{x(ao),x(a~) . . . .  } where X,.k is ei ther  D ( y ( a , , k ) ) o r  
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{y(a,, k)} according to whether in (1) the first or second possibility holds. We 

claim that X spans an n-connected subgraph with infinite degrees. First we 

check degrees, x(a,) is joined to all y(a, ,  k) (k < w). y(a,,  k) is joined to those 

x(aN) for which (1) holds with k = m + l , m  +2  . . . . .  etc. The points in 

D(y ( a , ,  k)) have infinite degrees, as welt. 

Assume that Y_C X, IYI----n- 1. The subsets X,.k- Y are connected. If 

x(a,),  x (a , . )~  Y, then they are in different components of X - Y  only if 

y ( a , , k ) E  Y for k < m  whenever y (a , , k )=y(a , , , k ) ;  either y ( a , , k ) E  Y or 

y(a,,, k )E  Y when they are different. But this is impossible as we have seen in 

the proof of Lemma 4. 

The set X,.k = {y(a,, k)} is joined to infinitely many x(aN), and only n - 1 of 

them can be in Y. If X,.~ = D (y (a,, k)), the infinitely many different points x (aN) 

are joined to the different y(aN, k), only n - 1 can be in Y, so there is an N < 

such that x(aN) is joined (in X -  Y) to X,.k, and we are done. 

As X is n-connected and has infinite degrees, there is an i with D, D X. By the 

assumption in the lemma, i E J'. By the choice of a, and by IX fq E(a)l___> m, 

i < 8 holds, so X C_ E ( 8 )  which is impossible, as none of the points x(a,) is in 

E(8). 

LEMMA 15. I f  X C_ Jl C_ J then there exists J0, a relatively closed subset of J1, 
w i t h X C J o ,  I /o l=<lXl+ o~. 

PROOF. Put r = [ X I + w. By induction on a < r +, we choose the sets X~ with 

X _C X~, [ Xo I --< r, such that for every a, if i E J and I D, n E (X,)[ => m then 

i G X,,  {X~ : a < x +} increasing, continuous, and if X, is not relatively closed in 

J1 (and we can assume this) an i E X~+~ - Xa with a point x ~ Di - E(X~) is 

joined to infinitely many points in E(X~). But this is impossible, by Lemma 14. 

This gives a closed J'_D X with I J'l--< I x I  + ,o. Now J o - - J ' n  J, is relatively 

closed in J1. 

DEFImTION 8. If < is a correct order on J'_C J, then X C J '  is neat if the 

following holds: whenever i ~ X ,  j < i  and D i O D i / O  or a point in 

D, - E({j:/" < i}) is joined to a point in Dj, then j E X. 

LEMMA 16. If  X is a neat subset of J', then X is relatively closed in J'. 

PROOF. If i E J ' - X  and ID, nE(x)l-->o~ then, as < is a correct order, 

there is a j E X  with i<],  D, fqDj~f~.  If i ~ J ' - X  and x ~ D , - E ( X )  is 

joined to yo, y~ . . . .  in E(X),  for every yj choose the <-minimal  ti for which 

Yi E D,, (ti E X as X is neat), by Lemma i1, infinitely many of the tj are 
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different, so there is a tj with i < t,  and x E D, and y, E D , , -  E({r: r < t,}) are 

joined, which gives i ~ X. 

LEMMA 17. I f  X C J' C J, and J' has < ,  a correct order, then there is a neat 

subset Y C J' with X C_ Y, ! Y I --< I x l  + ,o. 

PROOF. From Definitions 7 and 8 and an easy closure argument. 

LEMMA 18. Assume  that {J~ : a ~ y} is an increasing, continuous sequence 

with J, relatively closed in J~+~ (a < Y), J~.~ - J~ has a correct order. Then J~ - Jo 

has a correct order. 

PROOF. We can fuse these correct orders. 

5. The proof of Theorem 2 

First we give a proof on singular compactness of the correct order property. 

This is a special case of Shelah's famous Singular Cardinal Compactness 

Theorem [6], but it is not easy to see that it is. Even the simpler expositions [1], 

[3] are complicated enough that to give a proof (extracted from [3]) is simpler 

than to see that the conditions of the theorem really apply. Anyway, the next 

lemma should be best attributed to Saharon Shelah. 

LEMMA 19. Assume that J' C J, [ J ' [  = X > cf(X), J' is closed. I f  for every 

J" C J',  IJ"l < ;t, J" has a correct order, then so has J'. 

PROOF. Let {As : a < cf(h)} be an increasing, continuous sequence of cardi- 

nals converging to A, h0> cf(h). Put J '  = U{J~: a < cf(A)} as increasing decom- 

position with I J~ l=  A~. Our aim is to find another continuous decomposition 

{X ~ : a < cf(A )} with correct orders <~+i on X ~÷1 such that X ~ is neat in X ~÷~ by 

<a+~ and therefore Lemmas 16 and 18 give the claim. 

Put X~ =  J~. If X~ is found with [X~[= h~ for a k < to, choose a closed 

Y~_D X~ with I Y~I = [X~[. Let <~ be a correct order which end-extends <~ 

(possible as Y~_~ is closed). Enumerate  Y~ as Y~ = {y~.k: ~ < h,}. Choose 

X~.~ ~ Y~U{y~'k: /3 < c f ( h ) , ~  < h~} 

with the properties ]X~+ll = As, X~+~_D U{X~+1:/3 < a} and X~+~ f'l Y?+~ is a 

neat subset of Y?+t by <7 '+~ for l ==_ k (possible by Lemma 17, and a straightfor- 

ward to-long construction). Put X ~ = U{x~:  k < to} = U{Y~: k < to}. <" = 

U{<~: k < to} is a correct order on X". Clearly, {X~: a < cf(A)} is an increasing 

decomposition of J'. It is continuous, for, if a < cf(A) is limit, and x ~ X ~, say 
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x E Y ~ ,  x = y ~ ' k  with ~:<)t~. As a is limit, there is a / 3 < a  with ~<A~ .  

The re fo re  x E X~+~ C_ X ~. 

X ~ is neat  in X c~+1 by ~+1 X ~ = X ~ X.+~ yT+~. < , as n = U { x  ~ n . l < w} = 

U { U { x ~ N  Y~'+': l =< k < (o: l < to}. I f  l is f ixed, the sets x?,r~ Y / + '  

= .. Yt , I : l - < k < o ) }  = (k l, l + 1,. ) are neat  subsets of ~+1 therefore  U{X~  rq g~+' 

x ~ N y~,+l is neat in Y7+I, so, as the sets Y?+I end-extend each other ,  X ~ is neat  

in U{Y~+~: 1 < to}= X ~+'. 

LEMMA 20. For every J' C_ J there is a correct order on J', 

PROOF. By induction on I J ' l .  If J '  is countable,  it is trivial from Lemmas  9(d) 

and 11. If I J ' l  is singular, use L e m m a  19. If I J ' l  is regular,  use Lemmas  14 and 18. 

THEOREM 2. Every uncountable chromatic graph contains an uncountable 
chromatic n-connected subgraph with all degrees infinite. 

PROOF. Like in Theo rem 1. 
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